Why Hydrodynamics?

or why not?
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Navier-Stokes Equation ~1820

Velocity Pressure Viscosity
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Millennium Problem #4 = 1,000,000 %%

Olga Ladyzhenskaya (~1960): In 2 dimensions, yes.

. but still unproven in 3 dimensions.
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“Hydrodynamics” applies to (among many many other things):

Clouds (Helmholtz instability)

8,000 kg sailboat sky-leap

Hurricane



Hydrodynamics of quark-gluon plasma: length ~10"* m energy ~10™ K
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Turbulent Hydrodynamics of Interstellar Medium (Gases, lons, etc..)

Length scale ..  up to 1000 light years ~ 10 m

Carina Nebula (photo from Hubble)




Cold Trapped Atoms: energy ~ 107 K
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Energy scales: 107K - 10%K
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Archimedes (ca 250 BCE)
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“On floating bodies” da Vinci (~-151-0)
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Archlmedes (ca 250 BCE)
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Kinetic theory of gas, Boltzmann-Maxwell ... mid 1800’s



All of that was long before we knew that fluids are made of microscopic particles

Kinetic theory of gas, Boltzmann-Maxwell ... mid 1800’s
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Assuming the particles EQUILIBRATE (or THERMALIZE) we can then
describe the system with thermodynamic quantities (Temperature, Pressure, ....)
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We don’t need to know the “microscopic” details...

Ubiquitous <<

-

Conventional Fluids (made of molecules)
Quark-Gluon Plasma Fluid

Cold Atom Fluid

Electron Fluid

Electron-lon (Plasma) Fluid

Fluid of Gravitating Stars
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“Let there be Fluid...”

We don’t need to know the “microscopic” details...
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We don’t need to know the “microscopic” details...
We do need to know what the conservation laws are!

Conservation of Mass (mass density p)
Conservation of Energy (energy density e)
Conservation of Momentum (momentum density &)
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“Let there be Fluid...”

We don’t need to know the “microscopic” details...
We do need to know what the conservation laws are!

Conservation of Mass (mass density p)
Conservation of Energy (energy density e)
Conservation of Momentum (momentum density &)
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Incompressible | pe
Euler < Ft =0 _ _
Equations Navier-Stokes is
Dg from “next order”
2 —-F corrections
_ Dt
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“*Hydrodynamics” = dynamics of the conserved quantities
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everything reduced to just a few conserved (thermodynamic) variables
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Some systems have more than
“just a few” conserved variables...

“Thermodynamics” before “Hydrodynamics”



“*Hydrodynamics” = dynamics of the conserved quantities

CRUCIAL ASSUMPTION:
everything reduced to just a few conserved (thermodynamic) variables

Bruno . Andrei
Bertini : Starinets

Today's - Today's

second (' & third
speaker | speaker

Some systems have more than Sometimes Hydrodynamics
“ljust a few” conserved variables... before Thermodynamics!

“Thermodynamics” before “Hydrodynamics”
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Example 1: Flow of Stars
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Example 1: Flow of Stars

: - L ic Nucl o :
T\fgu are_here -. . .

In our part of the galaxy flow of stars is NOT hydrodynamic
(not in thermodynamic equilibrium...)

Near the galactic nucleus it is.
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1729 electrical flow
(Stephen Gray, Kent)

In most materials electrons do not flow hydrodynamically!
Electron momentum/energy is not conserved due to collisions with
impurities or lattice vibrations (phonons)

Poiseuille Flow

-

Flow through Pipe

3
Uniform Flow
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Hydrodynamics of
electron-phonon fluid
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Example 3: Two Oppositely Charged Fluids

Example 3a: Electron-hole plasma in graphenes

Free electrons (-) and Free holes (+)

Two (almost) conserved densities = “Two Fluid Hydrodynamics”

Momentum and energy can be exchanged between the two

Example 3b: Hydrogen Plasma

Free electrons (-) and Free Protons (+)

Two-fluid (magneto)-hydrodynamics




Plasma flow in the Corona

Images from Solar Dynamics Obervatory




Summary:
Thermodynamics — equilibrated system of many pieces
Hydrodynamics —dynamics of the (almost) conserved quantities

Applies over many many orders of magnitude
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